Montgomery Multiplier and Squarer in GF(2)

نویسنده

  • Huapeng Wu
چکیده

Montgomery multiplication in GF(2) is defined by a(x)b(x) r−1(x) mod f(x), where the field is generated by irreducible polynomial f(x), a(x) and b(x) are two field elements in GF(2), and r(x) is a fixed field element in GF(2). In this paper, first we present a generalized Montgomery multiplication algorithm in GF(2). Then by choosing r(x) according to f(x), we show that efficient architecture for bit-parallel Montgomery multiplier and squarer can be obtained for the fields generated with irreducible trinomials. Complexities in terms of gate counts and time propagation delay of the circuits are investigated and found to be comparable to or better than that of polynomial basis or weakly dual basis multiplier for the same class of fields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Montgomery Multiplier and Squarer in GF(2m)

Montgomery multiplication in GF(2m) is defined by a(x)b(x)r 1(x) mod f(x), where the field is generated by irreducible polynomial f(x), a(x) and b(x) are two field elements in GF(2m), and r(x) is a fixed field element in GF(2m). In this paper, first we present a generalized Montgomery multiplication algorithm in GF(2m). Then by choosing r(X) according to f(x), we show that efficient architectur...

متن کامل

A High Performance Reconfigurable Elliptic Curve Processor for GF(2m)

This work proposes a processor architecture for elliptic curves cryptosystems over fields GF (2 m). This is a scalable architecture in terms of area and speed that exploits the abilities of reconfigurable hardware to deliver optimized circuitry for different elliptic curves and finite fields. The main features of this architecture are the use of an optimized bit-parallel squarer, a digit-serial...

متن کامل

A High-Performance Reconfigurable Elliptic Curve Processor for GF (2)

This work proposes a processor architecture for elliptic curves cryptosystems over fields GF (2). This is a scalable architecture in terms of area and speed that exploits the abilities of reconfigurable hardware to deliver optimized circuitry for different elliptic curves and finite fields. The main features of this architecture are the use of an optimized bitparallel squarer, a digit-serial mu...

متن کامل

Efficient Square-based Montgomery Multiplier for All Type C.1 Pentanomials

In this paper, we present a low complexity bit-parallel Montgomery multiplier for GF(2m) generated with a special class of irreducible pentanomials xm + xm−1 + xk + x + 1. Based on a combination of generalized polynomial basis (GPB) squarer and a newly proposed square-based divide and conquer approach, we can partition field multiplications into a composition of sub-polynomial multiplications a...

متن کامل

GF(2) bit-parallel squarer using generalised polynomial basis for new class of irreducible pentanomials

Introduction: The squarer is an important circuit building block in square-and-multiply-based exponentiation and inversion circuits. When GF(2) elements are represented in a normal basis, squaring is simply a circular shift operation. Therefore, most previous works on squarers focused on other representations of GF(2) elements. For practical applications where values of n are often in the range...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000